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Highlights 

 I examine ownership unbundling of the transmission system operator in Germany 
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 The unbundling has very little impact on renewable electricity investment 

 Legal unbundling with behavior regulation removes entry barriers and levels the field 

Abstract 

While economics reveals that insufficient internalization of negative environmental externality from non-

renewable electricity generation is one of the major barriers to renewable electricity investment, the lack 

of a level playing field in the generation or retail market can be another serious impediment. Incumbent 

vertically integrated utilities face an incentive to prevent the penetration of renewable electricity when 

competition with entrants reduces their revenue from their own power plants. A bottleneck monopoly of 

power transmission network assets allows them to create several barriers to entry. The purpose of this 

study is to investigate this hypothesis by using a geographic quasi-experimental approach to the 

electricity industry in Germany. I take advantage of the fact that Germany has two transmission system 

operators (TSOs) that were ownership unbundled (separated) and two other TSOs that chose legal 

unbundling. I estimate the local average treatment effect of ownership unbundling of the transmission 

system operator on renewable electricity investment. The result indicates that installed capacity of solar, 

onshore wind power, and biomass power plants is not increased by the vertical separation even though 

the effect is likely to be overestimated by generation divestiture effects. This evidence suggests that the 

generation market in Germany is competitive without ownership unbundling. In other words, legal 

unbundling with behavior regulation can create a level playing field as ownership unbundling can. 

 

JEL classification: L16; L43; L94; Q42; Q48; Q55 
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investment, geographic quasi-experiment 

 

1．Introduction 

While economics reveals that insufficient internalization of negative environmental externality from 

non-renewable electricity generation is one of the major barriers for renewable electricity investment 

(Hu et al., 2018a; Neuhoff, 2005; Newbery et al., 2018; Owen, 2006), the lack of a level playing field in 

the generation or retail market can be another serious impediment (Hu et al., 2018b). Not only 

incumbent vertically integrated utilities but also independent generation and supply firms are expected 

to play a major role in investing in renewable electricity capacity after market liberalization; however, the 

incumbent utilities have an incentive to prevent the penetration of renewable electricity when 

competition with entrants declines their revenue from their own power plants (Jacobsson and Bergek, 

2004; Sovacool, 2009). Furthermore, incumbents’ bottleneck monopoly of power transmission network 

assets can allow them to build several barriers to entry, such as high costs for connection or delaying 

necessary administrative procedure of new competitors’ generators to start operation (Joskow, 1997; 

Van Koten and Ortmann, 2008). Such behavior is known as non-tariff discrimination or sabotage in the 

industrial organization literature (Economides, 1998; Höffler and Kranz, 2011). This conflict of interest 

within vertically integrated utilities has motivated the European Commission to encourage member 

states to implement ownership unbundling of the transmission system operator (TSO) (European 

Commission, 2010). 

This article evaluates the causal effect of ownership unbundling of a transmission company from one 

of the largest vertically integrated electric utilities in Europe. Among European countries, Germany 

provides an important case study because it is one of the most progressive countries in diffusing 

renewable electricity investment, as well as having completed restructuring of the industry to induce 

competition. My “geographic quasi-experiment” approach exploits the fact that two privately-owned 

TSOs in Germany (E.ON and Vattenfall) have undergone ownership unbundling in 2010, while the 

remaining two TSOs (RWE and EnBW) chose legal unbundling. This situation within the country 

creates a geographic boundary creating the “treatment area,” where a renewable electricity investor 

receives connection and system operation services from the ownership-unbundled (separated) TSOs, 

and the “control area,” where the legally unbundled TSOs provide them. My identification strategy is 

based on two facts: that treatment assignment depends discretely on the geographic location of power 

plants and that relevant covariates between the two areas become well-balanced once I focus on 

municipalities located very close to the boundary. This allows me to use the exogenous variation 

created by the geographical boundary of TSO’s operational area to identify the local average treatment 

effect (LATE) of ownership unbundling, accounting for differences in the renewable resource 

endowment, socio-economic characteristics, and national-level support policies. Local linear difference-
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in-difference (DID) regression and panel Tobit random-effects model estimate LATE. To overcome the 

assumptions that normally distributed and homoscedastic error Tobit model impose, I adopt censored 

quintile regression and Poisson regression as robustness checks. Finally, I add the ownership structure 

of distribution system operator to which renewable power plants connect to investigate the potential 

mechanism of ownership unbundling. 

The contribution of this paper is to provide causal evidence on how removing a barrier for competition 

can facilitate renewable energy development through vertical separation. Although countries choose 

different arrangements for TSO unbundling, there is little ex post empirical analysis regarding the 

effectiveness of the unbundling for renewable electricity investment (Chawla and Pollitt, 2013). The 

effects of restructuring and market competition on renewable electricity investment are paid less 

attention than the effects of direct support policies for renewable energy, such as the feed-in tariff and 

renewable portfolio standard (Haas et al., 2011). However, as Hitaj (2013) reveals in her research 

about the impact of functional unbundling on wind power investment in the United States, transmission 

network unbundling can be a more cost-effective measure than financial or tax incentives; thus, it is 

particularly informative for policymakers in countries aiming to decarbonize the power sector under 

financial constraints. To my knowledge, this is the first study to adopt a quasi-experimental approach 

using geographic information to identify the causal impact of transmission network unbundling on 

renewable electricity investment. 

The reminder of the paper is organized as follows. Section 2 discusses the background of the vertical 

separation of the electricity industry in Europe and Germany’s renewable development. Section 3 

reviews the existing literature in this field. Section 4 describes my identification strategy, followed by 

model specification and data description. Section 5 reports the results, Section 6 performs several 

robustness checks, Section 7 discusses the interpretation of the results, and Section 7 concludes. 

 

2. Background 

2.1. European Commission’s direction for transmission network unbundling 

In Europe, Directive 2003/54/EC in the second legislation in the field of European Union’s energy 

market required vertically integrated electricity utilities to legally separate transmission companies. 

However, a subsequent sector inquiry conducted by the European Commission’s Directorate General for 

Competition in 2005 found that discriminatory practices by vertically integrated utilities using transmission 

grids against competitors led to problems for new entrants and hindered renewable energy penetration 

(Eikeland, 2011; European Commission, 2007). The European Commission's draft directive for the third 

energy legislation package initially aimed to enforce ownership unbundling and solve conflicts of interest. 

In response to opposition by Germany and several member states, the European Commission could not 
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require vertically integrated utilities to unbundle ownership of the TSO; instead, Directive 2009/72/EC in 

the third energy legislation package required vertically integrated utilities to choose and implement among 

the following options: ownership unbundling, functional unbundling (ISO model), or strengthening 

behavior regulation on existing legally separated TSOs (ITO model) (European Commission, 2010). What 

is the difference between the legal unbundling set out in the second directive and the ITO model that 

appeared as a compromise in the third directive? Under the ITO model, the parent company (a former 

vertically integrated company) and its subsidiary companies are required to comply with stronger behavior 

regulations than before. These regulations are expected to prevent vertically integrated utilities from 

discriminating against non-affiliate market participants (Herrera Anchustegui, 2018).  

According to the status review of the third energy package issued by the Council of European Energy 

Regulators (CEER) in 2016, about 70% of transmission companies in the EU has implemented ownership 

unbundling (CEER, 2016), and only a few countries had adopted functional unbundling. European 

Commission (2014) evaluated the ITO model and found that stakeholders testified that the ITO model 

had worked well so far and it was too early to proceed further with the separation, though only 2 years 

had passed since the ITO implementation. Brunekreeft et al. (2014) agree with the effectiveness of the 

ITO model, because under that model the parent company simply owns the TSO as an asset and cannot 

influence the TSO strategically. On the other hand, Lowe et al. (2007) and Barrett (2016) argue that the 

ITO model cannot eliminate the potential for fundamental conflicts of interest in vertically integrated 

utilities, that national regulators are likely to suffer from regulatory capture by information asymmetry, and 

that separation of ownership or functions is necessary because it is virtually impossible to observe and 

punish anti-competitive behavior of vertically integrated utilities. This debate shows that the degree of 

effectiveness of TSO unbundling is still controversial. A similar dispute also exists in Japan, where 

privately owned vertically integrated utilities implemented legal unbundling in 2020 (Ito, 2013). 

 

2.2. German electricity industry 

The German electricity industry is characterized by four large vertically integrated utilities called the “Big 

4.” Figure 1 shows that E.ON, Vattenfall, RWE, and EnBW dominate the generation, transmission, 

distribution, and retail market. 

 

Figure 1. Electricity industry structure in Germany during 2010-2016 
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(Source: RAP (2015): Report on the German power system. Version 1.2 Study commissioned by Agora 

Energiewende.) 

 

Two of the vertically integrated utilities ended up splitting ownership of the TSO. E.ON was suspected 

of anti-competitive behavior by the kroon's Directorate-General for Competition (European Commission, 

2008). After investigation, E.ON announced in February 2008 that it would divest its subsidiary's 

transmission company E.ON Netz (Deutsche Welle, 2008a). In November 2009, E.ON announced that it 

would sell E.ON Netz to the Dutch state-owned company TenneT. E-ON completed the ownership 

unbundling in February 2010 (Duso et al., 2020). Vattenfall, a Swedish state-owned vertically integrated 

utility, sold its transmission company to a Belgian private company TSO Elia and an Australian 

infrastructure fund in March 2010; the transmission company was renamed 50Hertz. The other two 

vertically integrated utilities chose the ITO model (Brunekreeft et al., 2014). RWE announced in July 2011 

that it would sell 74.9% of its subsidiary TSO Amprion to a consortium of German institutional investors, 

including insurance company Commerz Real and a pension fund, in September of that year. This is not 

regarded as ownership unbundling, because RWE has not completely given up ownership. EnBW 

continues to own TransnetBW as a wholly owned subsidiary TSO. Figures 2 summarizes how the two 

vertically integrated utilities in eastern Germany have separated their ownership and the two other 

companies, in western Germany, have switched to ITO. In this study, I focus on the east–west boundary 

(i.e. TenneT and 50Hertz vs. Amprion and TransnetBW operating areas) where the status of ownership 

unbundling of transmission companies changes discontinuously. 

 

Figure 2. Transmission network unbundling in German vertically integrated utilities 
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2.3. German renewable electricity investment 

Figure 3 shows that the amount of electricity generated from renewable resources in Germany has 

continued to increase over the last decades. There has been remarkable growth of solar PV, onshore 

wind power generation, and biomass power generation1 in recent years. An interesting feature of the 

generation market in Germany is the participation of third-party producers. Toke et al. (2008) shows that 

more than 5 GW of wind power plant is owned by local farmers and citizen participating in co-operatives, 

which was the largest amount among European countries at the time. In 2013, 30% of solar PV and 

onshore wind power capacity was installed by households and co-operatives (Brunekreeft et al., 2016). 

By contrast, existing utilities owned only 12% of renewable power in 2013. Hence, it is important to explain 

why these third-party producers could play the large role in investing renewable electricity generation 

capacity. Unbundling the transmission sector from power generation and retail sectors may explain the 

increase of renewable electricity development by influencing connection to the transmission or distribution 

grid, system operation, and investment in transmission lines. If these are implemented by transmission 

companies in a discriminatory manner, there will be barriers to entry for independent renewable power 

producers. If sufficient separation were implemented, both potential conflicts of interest and concerns 

about anti-competitive behaviors would be eliminated, and renewable electricity investment would be 

accelerated. 

 

Figure 3. Electricity generated by renewable energy in Germany 

 
1 The main energy resource of biomass power generation in Germany is biogas. Biogas is a gaseous mix of methane 
and carbon dioxide, which is produced by mixing organic waste, such as livestock manure and energy grains (e.g., corn), 
and fermenting it with the aid of bacteria. 



7 
 

 

Source: BMWi, 2018. 

 

3．Literature review 

Pros and cons of vertical separation in electricity industry have been widely discussed (Brunekreeft, 2008, 

2015; Meyer, 2012a, 2012b; Pollitt, 2008). Previous econometric literature on TSO unbundling mainly 

focuses on the positive effect on retail price (Fiorio and Florio, 2013; Nagayama, 2007, 2009). On the 

other hand, Gugler et al. (2013) analyze the impact of ownership separation of the TSO on the total 

amount of power generation, transmission, and distribution investment in European countries. Gugler et 

al. (2017) estimate the extent to which TSO unbundling erodes the cost savings realized by vertical 

integration in Europe. Other studies focus on DSO unbundling; for example, Nikogosian and Veith (2012) 

find that ownership unbundling of DSO is associated with a lower retail price in Germany than vertically 

integrated utility or legally bundled DSO. The authors discuss that incentives for the DSO to engage in 

non-price discrimination might not have been removed under the legal unbundling. Heim et al. (2018) 

estimate that legal separation of DSO results in a 5% to 9% decrease of transmission tariff in Germany. 

However, there is little empirical evidence regarding the effect of TSO unbundling on renewable electricity 

investment. 

Other strands of econometric literature investigate the determinants of renewable energy development. 
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Schaffer and Brun (2015) and Dharshing (2017) use spatial econometric methods to identify the 

determinants of the level of residential solar PV installation in Germany and find that it is correlated not 

only with the area-specific solar radiation level and expected rate of return for investment but also with 

local housing density, income, education, and low unemployment. Interestingly, both studies show that 

the concentration of residential rooftop solar PV installations in Germany can be explained by the imitation 

effect. Hitaj and Löschel (2019) is a seminal work that demonstrates the impact of German feed-in tariffs 

on onshore wind power installation. The authors estimate that grid density, measured as the ratio of the 

length of a transmission line to district area, is positively correlated with wind power capacity only for the 

period 1996–1999, and not afterwards. They attribute this result to the Renewable Energy Act 

(Erneuerbare Energien-Gesetz) amended in 2000, which guaranteed the priority connection for 

renewables and mandated TSOs to bear the necessary grid expansion costs. In other words, connection 

cost has no longer been burdened by developers in deciding where to locate onshore wind power plant 

since 2000. Goetzke and Rave (2016) and Lauf et al. (2019) also estimate the determinants of wind 

power deployment in Germany using district-level data, and find that land availability, the expected 

profitability of wind projects, and wind resource are important factors in explaining the development 

pattern. 

Again, however, none of these studies explicitly include TSO unbundling as an important explanatory 

variable. With regard to onshore wind power, Hitaj and Löschel (2019) assume that the TSO just follows 

developers’ requests for connection and bear costs in compliance with the Renewable Energy Act 

provisions. However, a legally unbundled TSO, a subsidiary of the vertically integrated utility, may be 

reluctant to connect or manage renewable electricity provided by other non-affiliate companies. If a TSO 

is completely separated from a vertically integrated utility’ influence, potential conflicts of interest might 

disappear and the TSO may obtain more freedom for independent decision-making about connection 

and system operation, which may increase renewable electricity investment. In fact, Sugimoto (2019) 

finds that functional unbundling of the TSO in the United States is correlated with onshore wind power 

investment by independent power producers, implying that improved connection and system operation 

by independent TSOs matter for renewables. 

 

4. Research design and data 

 

4.1. Identification strategy 

Figure 4 shows the geographic boundary where a renewable power plant receives connection and 

system operation from TSOs in Germany. Panel A displays each TSO’s system operation area, and 

Panel B shows where the red border intersects each of six states: Lower Saxony (Niedersachsen), 

North Rhine Westphalia (Nordrhein-Westfalen), Rhineland-Palatinate (Rheinland-Pfalz), Hesse 
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(Hessen), Baden-Württemberg, and Bavaria (Bayern). I call this border as “treatment assignment 

boundary.” This boundary line does not overlap with significant geographic obstacles, such as the 

Rhine river, the Alps, the autobahn, or railways except in the southern part of Hesse. I exploit the fact 

that TenneT experienced ownership unbundling from E.ON in 2010 while western TSOs such as 

Amprion and TransnetBW, remained in the state of legal unbundling. This generated a sharp 

discontinuity in the treatment assignment (received system operation by the ownership-unbundled TSO: 

TenneT) as a function of location. 50hertz is another TSO that separated its ownership from Vattenfall, 

but I do not use it in my analysis because it is far from the boundary of Amprion and TransnetBW’s 

system operation areas (i.e. the control area). 

 

Figure 4. TSOs’ operation areas, state borders, and treatment assignment boundary 

Panel A. TSOs’ operation areas      Panel B. State borders and the treatment assignment boundary 

        

Note: The red line in Panel B illustrates the treatment assignment boundary between treatment area (i.e. TenneT’s 

system operation area) and control area (i.e. Amprion’s and TransnetBW’s system operation area) 

 

In this setting, geographic regression discontinuity design (RDD) is applicable if disaggregated 

locational data, such as household address and house address, are available (Keele and Titiunik, 2015, 

2016). Unfortunately, location data for renewable power plants in Germany is not available due to data 

protection reasons; therefore, I apply a geographic quasi-experiment (GQE) approach suggested by 

Keele et al. (2017). 

In this approach, outcome variable Yit is renewable electricity generation capacity installed in 

municipality i in the year t that it starts operation. Renewable power sources include solar power, 

onshore wind power, and biomass power plants. I adopt the potential outcome framework and denote 

Yit0 as the potential outcome of municipality i in the absence of treatment Ti=0 and Yit1 as that with 

treatment Ti=1. Treatment is defined as receiving connection and system operation from the ownership-
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unbundled TSO (TenneT). Thus, the observed outcome is written as follows: 𝑌௧ = 𝑇𝑌௧ଵ − (1 − 𝑇)𝑌௧. 

I define the centroid of municipality i based on the coordinate system of longitude and latitude and 

denote it as 𝐶𝒊 = (𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 , 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒). The location point Ci determines treatment status Ti across a 

geographic boundary in a discrete manner, and so Ti is a discrete function of the municipality’s location 

𝑇 = 𝑓(𝐶). The treatment is defined by the following dummy variable: 

 

𝑇 = ൜
    1    if 𝐶 ∈ treatment area

0    if 𝐶 ∈ control area.
 

 

Let bi* be a point on the treatment assignment boundary that is closest to Ci. Then, I can calculate the 

Euclidean distance di* between bi* and Ci: di*=d(bi*, Ci).2 Next, X'it represents exogenous covariates 

such as renewable resource potential and population density. The GQE requires “conditional 

geographic mean independence” for identification: 

 

𝐸[𝑌௧ଵ | 𝑑
∗ < 𝐷, 𝑋′௧, 𝑇] = 𝐸[𝑌௧ଵ| 𝑑

∗ < 𝐷, 𝑋′௧] 

𝐸[𝑌௧ | 𝑑
∗ < 𝐷, 𝑋′௧, 𝑇] = 𝐸[𝑌௧| 𝑑

∗ < 𝐷, 𝑋′௧] 

 

This assumption requires the potential outcomes Yit0 and Yit1 to be conditionally mean independent of 

the treatment assignment Ti within a buffer D around the boundary. Before performing the main 

estimation, two falsification tests are conducted to check the validity of the assumption. The first test 

checks the balance of observable covariates focusing on the narrow regions within 30 km, 20 km, and 

10 km from each side of the boundary (total bandwidth 60 km, 40 km, 20 km, respectively). The second 

test regresses pretreatment outcome in 2007 on the covariates in 2008 to investigate whether there are 

enough observable covariates to remove differences in the pre-treatment outcomes (Keele et al., 2017). 

Any GQE becomes invalid if individuals can precisely manipulate the treatment assignment variable 

(Lee and Lemieux, 2010). Such a sorting (i.e. self-selection) process may occur in my case if some 

renewable power developers can precisely select the location for renewable power plant installation, 

expecting to receive better services from more independent TSO. However, I assume this is not likely to 

occur in my empirical example for three reasons. First, the balance test presented in the Results 

section shows that geographic and demographic covariates are mostly balanced across the boundary 

within 10 km, indicating that systematic sorting based on these covariates is unlikely to have occurred 

(Table 2). Second, the density test in the section 5 shows that renewable power plants located within 10 

km from the boundary are distributed continuously before and after the unbundling (Figure 6).  

 
2 I use World Geodetic System 1984 as a geographic coordinate reference system and Universal Transverse Mercator 
zone 33 N as a projected coordinate reference system (EPSG:32632). 
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Third, renewable electricity investors would not know the ownership unbundling of E.ON until 2008. 

The announcement of ownership unbundling by E.ON in February 2008 surprised even the German 

government (Deutsche Welle, 2008a). E.ON and the government had opposed the mandatory TSO 

ownership unbundling suggested by the European Commission and discussed a joint holdings option 

as a compromise (Deutsche Welle, 2008b). However, E.ON chose ownership unbundling to settle down 

the negotiation with European Commission about illegal cartel agreements (Brunekreeft et al., 2014). 

This process shows that it was impossible for renewable electricity investors to strategically locate their 

plants in the treatment area at least until 2008. In the case of such selective sorting across the 

treatment assignment boundary occurring after 2008, the robustness check in the section 6 restricts 

dataset to those power plants that started operation in or before 2010. Because it takes developers 

usually more than three years from initial planning to start operating a renewable power plant (Bauwens 

et al., 2016; Sovacool et al., 2020), I believe the possible anticipation effect initiated by the E.ON’s 

announcement in 2008 cannot cause capacity addition at least until 2010. The robustness check 

confirms that such a sorting problem seems not to exist (Table 6). Still, to the extent that unobservable 

covariates determine the location of renewable power plants, the sorting could bring some bias to the 

estimated effect of the unbundling. 

 Compound treatments are another obstacle for identifying local average treatment effect of interest 

in GQE (Keele et al., 2017; Keele and Titiunik, 2015). Compound treatment means there are multiple 

treatments affecting potential outcomes. In my empirical application, there are three possible compound 

treatments. First, the Renewable Energy Act was revised in 2016 to set the upper limit for new onshore 

wind power generation in only the north area. I restrict my dataset to 2016 to isolate a compound 

treatment of this law. Second, federal states are probably offering compounding treatments because 

each state has several ways to induce renewable electricity investment, such as allocating specific 

areas for renewable power plants and setting targets for future renewable electricity investment 

(Ohlhorst, 2015). It is likely that renewable electricity generation capacity installation level differs 

between states. Among the five states where the geographic boundary crosses, Baden-Württemberg 

belongs to only the control area and Bavaria belongs to only the treatment area, while Lower Saxony, 

North Rhine Westphalia and Hesse are common to both areas. Thus, a potential compound treatment 

may be a concern in the two states in the south region. I include state dummies to separately estimate 

the unbundling effect. Finally, the sale of large scale power plants by E.ON in the treatment area may 

compound potential outcomes. As a settlement with the European Commission against anti-competitive 

behaviors, E.ON sold 5000 megawatts (MW) of non-renewable power plants between January 2009 

and May 2010 (Duso et al., 2020). Most divested power plants are located in TenneT’s area. This event 

may have increased competition in the generation market only in the treatment area and weakened the 

incentive of TenneT to exercise discriminatory behavior against renewable electricity investment by 
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non-affiliate developers. If so, it would lead to overestimation of the effect of ownership unbundling of 

the TSO on renewable electricity generation capacity. A robustness check by limiting the data up to 

2010 can partly avoid this compound treatment, because power plants installed up to 2010 are most 

likely not to be affected by the divestiture. The result confirms that the threat is not the case (Table 6). 

 

4.2. Model specifications 

The following linear regression functions are used for the estimation: 

 

Yit=c+β1Ti+β2Postt+β3Ti × Postt+β4 X'it + αi + Year୲+ɛit.  

 

This is the standard panel data fixed-effects model. β3 is the main parameter of interest, representing 

the local average treatment effect. X'it denotes a vector of exogenous covariates and Yeart includes 

year dummies. Note that I restrict the estimation to the areas within 30 km from each side of the 

boundary (total 60 km). This local linear DID regression may produce inconsistent estimates in the 

presence of a serious “corner solution”: observed zero values for the nontrivial fraction of the outcome 

variable (Wooldridge, 2010). Actually, many municipalities have zero renewable electricity capacity 

installed during the study period. 

To address the corner solution problem, I use panel Tobit random-effects model. Since the panel 

Tobit fixed-effects model suffers from an incidental parameters problem under the small T compared to 

the number of observations (Neyman and Scott, 1948) and leads to inconsistent estimates, I rely on a 

random-effects model. This non-linear model is first proposed by Tobin (1958) using the maximum 

likelihood estimator. The Tobit model is specified as: 

 

Y*it=c+β1Ti+β2Postt+β3Ti × Postt+β4 f(Ci)+β5X'it + αi + Statei + Year୲+ɛit 

Yit=max(0, Y*it) 

αi|Xit ~ Normal(0, 𝜎ఈ
ଶ), 

ɛit|Xit ~ Normal(0, 𝜎ఌ
ଶ) 

 

Y* is modeled as a latent variable, as opposed to the actually observed outcome Y. Accordingly, when 

Y*>0, Y is observed and otherwise Y is 0. f(Ci) is a function of municipality’s location. The functional form 

of f(Ci) is unknown and thus I approximate by two forms of polynomial regarding the municipality’s location, 

which aims to control smooth functions of locations. In line with Dell (2010), I use a cubic polynomial of 

distance from the municipality to the boundary, as well as a cubic polynomial of longitude and latitude. 

Appendix reports the estimation of the quadratic and quartic of distance to the boundary and the results 

are virtually unchanged. Random effect αi and idiosyncratic error term ɛit is assumed to follow the 
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normal distribution and have the homoscedastic variance as well as being independent with the 

observable covariates X'it. Since this model still may produce inconsistent estimates under the non-

normal or heteroskedastic error term, robustness checks in section 6 adopt several robust models to 

address the potential violation of these assumptions. 

 

4.3. Data 

I use solar, onshore wind, and biomass power generation capacity measured in MW installed as outcome 

variables (2008–2016). Plant-level data are available from four TSOs in Germany (Netztransparenz.de, 

2019). The dataset contains plant capacity size, operation start date, which TSO the plant is managed 

by, to which DSO it is connected, voltage level, the municipality where it is located, and so on. 

Unfortunately, it does not contain comprehensive address information within a municipality due to privacy 

protection. Therefore, I merge the plant capacity data to the municipality’s centroid where the power plant 

is located. The location data are used to calculate the Euclidean distance from the municipality to the 

boundary of the transmission system operation area between TenneT (treatment area) and Amprion or 

TransnetBW (control area). The total sample consists of 11,082 municipalities in Germany. Note that the 

dataset includes urban districts (kreisfrei Städtes) and city states (Stadtstaaten), such as Berlin and 

Hamburg. Data after 2017 are available but excluded from the analysis, because the Renewable Energy 

Act was revised in 2016 to limit onshore wind deployment in the north area to stop grid congestion (BMWi, 

2020). 

Figure 5 shows the annual capacity addition of renewable power plants during 2004–2016 at 

municipalities located within 10 km of the geographic boundary. Panel A displays that solar power plants 

development peaked in 2010. Panel B shows that the onshore wind power capacity development 

stagnates until 2010 but records an increasing trend after 2010. Panel C shows that most biomass power 

plants are installed by 2011; all outcomes seem to have parallel pre-trends between treated and control 

areas before 2010, which supports the required assumption for the DID regression. 

 

Figure 5. Renewable electricity generation capacity addition by municipality with 10 km from the boundary 

Panel A. Solar power capacity                     Panel B. Wind power capacity 
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Panel C. Biomass power capacity 

 

 

The vector data of German map is obtained from GADM (GADM, 2018). Geographic covariates include 

elevation, slope, solar power potential, wind power potential, and agricultural land area. Elevation (unit: 

meter) and slope (unit: degree) data are extracted from a digital terrain model of Germany based on 

NASA’s Shuttle Radar Topography Mission (OpenDEMData.info, 2020). Solar power potential is derived 

from solar radiation data of “Yearly average global irradiance on a horizontal surface (W/m2), period 

2005–2015” from the Climate Monitoring Satellite Application Facility Solar Radiation Data (European 

Commission, 2020). I spatially average raster values by municipality and multiply them by 8760 h / 1000 

to obtain annual solar power resource potential (kW/year). Wind power potential is wind power density 

per municipality (kW/m2). The German Meteorological Service calculates 200 m × 200 m gridded Weibull 

parameters (scale parameter c and shape parameter k) assuming a hub height of 80 m based on 218 

quality-controlled ground stations during 1981–2000 (German Meteorological Service, 2020). Following 

Pishgar-Komleh et al. (2015), I calculate average wind power density per municipality using the Weibull 
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parameters, assuming that air density is 1.225 (kg / m3).3 Agricultural land area measured in hectares is 

a proxy for biomass resource potential. These three variables are proxies for renewable resource 

potential, which is probably one of the most important factors for renewable electricity investment (Fleiß 

et al. 2017; Krohn et al. 2009). Other covariates include GDP per capita (€), population density, and 

property tax rate determined by municipality (Grundsteuer B). These covariates are published by the 

Federal Statistical Office (2020). 

Table 1 presents descriptive statistics. The first three columns show observations, means, and 

standard deviations of all variables for the full sample. The next three columns summarize the same 

statics using the sample within 10 km from the boundary between TenneT and Amprion/TransnetBW. It 

is important to note that all outcome variables have nonnegative values and means smaller than the 

standard deviations, implying a long right tail distribution with corner solution. The dataset is an 

unbalanced panel because GDP per capita is only observable in 2008, 2010, 2013, 2014, and 2015. 

 

Table 1. Descriptive statistics during 2008-2016 

 Full dataset 
Sub-sample dataset  

(within 10 km) 

Variable Obs Mean Std. Dev. Obs Mean Std. Dev. 

Solar power 

capacity 
81,000 0.43 1.67 4,653 0.58 1.27 

Wind power 

capacity 
81,000 0.29 2.55 4,653 0.35 3.40 

Biomass 

power 

capacity 

81,000 0.04 0.26 4,653 0.06 0.28 

Solar power 

potential 
80,946 125.19 4.33 4,653 125.56 3.92 

Wind power 

potential  
80,946 203.23 84.59 4,653 182.54 53.62 

Agricultural 

land (biomass 

power 

potential) 

78,291 1912.32 2008.71 4,581 2355.96 2239.65 

Elevation 80,946 268.02 233.88 4,653 358.15 230.15 

 
3 The wind power density per swept area of turbine for (kW/m2) is calculated as: 

ଵ

ଶ
∗ air density ∗ cଷ ∗ Γ ቀ

୩ାଷ

୩
ቁ ∗

ଵ

ଵ
.  
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Slope 80,946 3.46 3.04 4,653 4.07 2.91 

Population 

density 
74,154 201.42 304.61 4,580 239.53 344.21 

GDP per 

capita 
40,386 16237.88 4760.59 2,543 17650.48 4106.89 

Property tax 

rate  
73,993 344.69 61.36 4,581 341.87 64.26 

 

5. Results 

Before estimating LATE, I conduct three falsification tests. First, I simply regress each pretreatment 

covariate as a placebo outcome on the treatment variable to find the bandwidth where pretreatment 

covariates balance within 30 km from each side of the boundary. In this way, I hope the statistically 

insignificant treatment effects will be estimated by narrowing the distance to the boundary.  

Table 2 contains the result of the balance test. A robust standard error is in the bracket, and Conley’s 

standard error robust to spatial correlation is in the parentheses (Conley, 1999). Conley’s standard error 

tends to be larger than the robust standard error. Most covariates (all except agricultural land area and 

slope) become insignificant as the municipality’s distance to the boundary approaches 10 km, indicating 

that covariate balancing improves as distance narrows. This suggests that the data sample within 10 

km from the treatment assignment boundary are the most suitable for analysis, neutralizing the role of 

unobservable factors. As Keele and Titinuk (2015) note, it is known that narrowing distance does not 

necessarily remove all the imbalances of covariates. Note that I exclude all municipalities in Rhineland-

Palatinate that are located mostly in the control area, to accomplish covariate balancing. Thus, 

municipalities located within 10 km from the boundary in five states are used for the following analysis.4 

Municipalities in the treatment area within 10 km from the boundary still have on average less 

agricultural land by 640 hectares and steeper land than the control area by about one degree. Although 

estimating the treatment effect on solar and wind power generation capacities is less likely to suffer 

from confounding covariates, the effect of ownership unbundling on biomass power capacity may be 

underestimated, since agricultural land should be positively correlated with biomass power plant 

installation.  

 

Table 2. Balance test  

Solar power potential (kW) Wind power potential (kW) 

30 km 30 km 

 
4 The online appendix reports the results of the main analysis including all municipalities in Rhineland-Palatinate and 
confirms that the results are virtually unchanged. 
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Treatment Control Std.Err. Treatment Control Std.Err. 

125.326 126.161 [0.22]*** 177.459 188.054 [3.14]*** 

  (1.002)   (10.833) 

20 km 20 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

125.415 126.033 [0.26]** 177.28 188.27 [3.58]*** 

  (0.798)   (9.398) 

10 km 10 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

125.381 125.748 [0.35] 179.732 187.364 [4.83] 

  (0.533)   (6.835) 

Agricultural land (ha) Elevation (m) 

30 km 30 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

2107.124 2432.442 [116.49]*** 332.15 384.591 [12.92]*** 

  (353.537)   (59.686) 

20 km 20 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

2070.789 2487.115 [139.53]*** 335.334 380.168 [15.20]*** 

  (369.419)   (50.911) 

10 km 10 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

2065.594 2705.394 [202.22]*** 345.421 370.158 [20.76] 

  (354.555)   (32.337) 

Slope (degree) Population density 

30 km 30 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

4.077 4.055 [0.17] 219.266 248.96 [17.12]*** 

  (0.547)   (52.111) 

20 km 20 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

4.101 3.749 [0.19]* 214.235 263.188 [20.56]** 

  (0.468)   (52.779) 

10 km 10 km 
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Treatment Control Std.Err. Treatment Control Std.Err. 

4.452 3.589 [0.26]*** 220.693 260.716 [31.28] 

  (0.438)   (58.404) 

GDP per capita (euro) Property tax rate (%) 

30 km 30 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

15510.5 15549.53 [221.14] 321.636 332.234 [3.32]*** 

  (841.87)   (11.198) 

20 km 20 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

15319.96 15635.65 [240.80] 322.888 328.02 [4.02] 

  (712.99)   (10.842) 

10 km 10 km 

Treatment Control Std.Err. Treatment Control Std.Err. 

15347.24 15426.22 [330.22] 323.46 327.481 [5.35] 

  (626.90)   (8.649) 

Note: Outcomes are the municipality’s covariates in 2008, except that 2007 is used for GDP per capita. The data samples 

used are reduced progressively from 30 km to 20 km and to 10 km from the boundary. Robust standard error is in brackets, 

and Conley’s standard error is in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. 

 

Second, Figure 6 plots the counts of installed renewable power plants per municipality in each area 

located within 10 km from the treatment boundary. This density test in the spirit of McCrary (2007) 

illustrates that there is no indication of significant sorting of the location in the treatment area after 2010. 

 

Figure 6. Density test 

Panel A. Solar power plant     Panel B. Wind power plant      Panel C. Biomass power plant 
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Notes: The plot shows the density of observations per municipality by treatment and control area located within 10 km 

from the treatment boundary. OU denotes the ownership-unbundled TenneT’s operation area, and LU is the legally 

unbundled area operated by Amprion and TransnetBW. 

 

Third, I perform the placebo test using the cross-sectional data for renewable electricity generation 

capacity installed in 2007 with covariates in 2008. I use the cubic polynomial of distance to the 

boundary as well as longitude and latitude. I expect insignificant estimates because the outcome in 

2007 is not affected by the treatment, by definition. Table 3 shows that ownership unbundling has a 

statistically insignificant association with wind and biomass. The association with solar power plants is 

negative and significant at 10%. These results show no indication of the violation of the parallel pre-

trend assumption and indicate that the announcement by E.ON of the TSO sale (E.ON Netz) in 2008 is 

not likely to induce expectation for renewable electricity developers. 

 

Table 3. Placebo test on outcomes in 2007 

Outcome Solar Wind Biomass 

Cubic 

Polynomial 
Distance Lon/lat Distance Lon/lat Distance Lon/lat 

T*Post -0.119* -0.123* 0.136 0.183 0.169 0.144 

[Std.Err] [0.06] [0.07] [0.23] [0.23] [0.12] [0.14] 
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Covariates Yes Yes Yes Yes Yes Yes 

Adj-R2 0.037 0.028 0.05 0.049 -0.002 -0.011 

Clusters 499 499 161 161 312 312 

Observations 502 502 161 161 314 314 

Note: Outcome is renewable electricity generation capacity installed (starting operation) in 2007. The data sample used 

covers the area within 10 km from the boundary. Distance to the treatment assignment boundary is specified as the cubic 

polynomial of distance to the boundary and longitude and latitude. Robust standard error clustered by the municipality is 

in brackets. Statistically significant coefficients are denoted by the following rule: * p<0.1, ** p<0.05, *** p<0.01. All 

estimates include state dummies. 

 

Table 4 reports the local linear DID regression results. I repeat the estimation experimentally using 

the sample that contains the municipalities located within 30 km, 20 km, and 10 km from each side of 

the boundary. I cluster standard error at the municipality level. The result shows that the ownership 

unbundling by E.ON does not have a statistically or economically significant coefficient with any 

renewable electricity investment. The point estimates keep stable across all distances and 

specifications. A similar result is gained for the Tobit model in Table 5. The first three columns add the 

polynomial of the municipality’s distance to the treatment assignment boundary, while the fourth to sixth 

columns use longitude and latitude as geographic location control variables. The results show that the 

Tobit model also estimates insignificant effects on renewables, regardless of the three bandwidths. 

 

Table 4. Local linear DID regression estimates  

Panel A. Outcome: Solar power capacity 

Distance within 30 km 20 km 10 km 

T*Post 0.006 0.003 0.007 

[Std.Err] [0.04] [0.05] [0.07] 

Covariates Yes Yes Yes 

Adj-R2 0.157 0.138 0.145 

Clusters 1342 965 509 

Observations 6703 4821 2543 

 

Panel B. Outcome: Wind power capacity 

Distance within 30 km 20 km 10 km 

T*Post -0.109 -0.099 -0.308 

[Std.Err] [0.10] [0.12] [0.21] 
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Covariates Yes Yes Yes 

Adj-R2 0.003 0.004 0.004 

Clusters 1342 965 509 

Observations 6703 4821 2543 

 

Panel C. Outcome: Biomass power capacity 

Distance within 30km 20km 10km 

T*Post 0.028 0.011 0.001 

[Std.Err] [0.02] [0.02] [0.03] 

Covariates Yes Yes Yes 

Adj-R2 0.034 0.043 0.056 

Clusters 1342 965 509 

Observations 6703 4821 2543 

Note: Outcome is renewable electricity generation capacity installed (starting operation) per year. The data sample used 

is progressively reduced from 30 km to 20 km and to 10 km from the boundary. Robust standard error clustered by the 

municipality is in brackets. Statistically significant coefficients are denoted by the following rule: * p<0.1, ** p<0.05, *** 

p<0.01. 

 

Table 5. Tobit random-effects model estimates  

Panel A. Outcome: Solar power capacity 

Outcome Solar 

Cubic Polynomial Distance to Boundary  Longitude and Latitude 

Distance within 30 km 20 km 10 km 30 km 20 km 10 km 

T*Post 0.0089 0.0043 -0.0183 0.0090 0.0041 -0.0168 

[Std.Err] [0.04] [0.05] [0.07] [0.04] [0.05] [0.07] 

Covariates Yes Yes Yes Yes Yes Yes 

Observations 6703 4821 2543 6703 4821 2543 

 

Panel B. Outcome: Wind power capacity 

Outcome Wind 

Cubic Polynomial Distance to Boundary Longitude and Latitude 

Distance within 30 km 20 km 10 km 30 km 20 km 10 km 

T*Post 0.0060 -0.0463 -0.3046 -0.00003 -0.0513 -0.3061 

[Std.Err] [0.12] [0.15] [0.31] [0.12] [0.15] [0.31] 
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Covariates Yes Yes Yes Yes Yes Yes 

Observations 6703 4821 2543 6703 4821 2543 

 

Panel C. Outcome: Biomass power capacity 

Outcome Biomass 

Cubic 

Polynomial 
Distance to Boundary  Longitude and Latitude 

Distance 

within 
30km 20km 10km 30km 20km 10km 

T*Post 0.0118 0.0035 0.0062 0.0130 0.0046 0.0066 

[Std.Err] [0.01] [0.01] [0.02] [0.01] [0.01] [0.02] 

Covariates Yes Yes Yes Yes Yes Yes 

Observations 6703 4821 2543 6703 4821 2543 

Note: Outcome is renewable electricity generation capacity installed (starting operation) per year. The data sample used 

is reduced progressively from 30 km to 20 km and to 10 km from the boundary. Columns 1–3 use the cubic polynomial of 

distance to the treatment assignment boundary and columns 4–6 use that of longitude and latitude. Average marginal 

effect is reported. Statistically significant coefficients are denoted by the following rule: * p<0.1, ** p<0.05, *** p<0.01. All 

estimates contain year dummies and time-invariant covariates such as solar potential, wind power potential, agricultural 

land, elevation, slope, and state dummies. 

 

6. Robustness checks 

I perform several robustness checks to confirm the sensitivity of the main estimation result. All 

robustness checks except the local linear DID model use cubic polynomial of the distance to the 

boundary. Appendix reports the estimation results using that of longitude and latitude. All robustness 

checks report the results for a 10 km buffer. 

First, I restrict the data sample to 2008–2010 to avoid the possible contamination by sorting and the 

compound treatment of the generator divestiture by E.ON. If the selective sorting occurs in the 

treatment area, more renewable power plant should be installed latter periods rather than just after 

implementation. Table 6 reports that most coefficients are negative but insignificant and similar in 

magnitude to the estimation in the previous section. 

 

Table 6. Robustness checks when data sample is 2008–2010 

Outcome Solar Wind Biomass 

Model DID Tobit DID Tobit DID Tobit 
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T*Post -0.432* -0.296** -0.056 -0.108 -0.045 0.026 

[Std.Err] [0.24] [0.14] [0.12] [0.11] [0.05] [0.04] 

Covariates Yes Yes Yes Yes Yes Yes 

Adj-R2 0.157  0.012  0.048  

Clusters 509  509  509  

Observations 1018 1018 1018 1018 1018 1018 

Note: Outcome is renewable electricity generation capacity installed (starting operation) per year. The data sample used 

covers within 10 km from the boundary. Distance to the treatment assignment boundary is specified as the cubic 

polynomials. Robust standard error is clustered by municipality in brackets for the local linear DID. Statistically significant 

coefficients are denoted by the following rule: * p<0.1, ** p<0.05, *** p<0.01. All Tobit random-effect estimates contain year 

dummies and time-invariant covariates such as solar potential, wind power potential, agricultural land, elevation, slope, 

and state dummies. 

 

Second, I use the censored quintile regression (CQR). While both local linear DID regression and Tobit 

model estimate conditional mean E[Y|X], CQR suggested first by Powell (1986) estimates conditional τ-

quintile 𝑄ఛ[𝑌|𝑋], taking censoring5 or corner solution into account. Unlike the Tobit model, the CQR 

allows the error term to be non-normal and heteroskedastic, and robust to outliers. Chernozhukov and 

Hong (2002) invents a three-step algorithm for Powell’s CQR estimator. In the first step, a set of 

observations that are unlikely to be at a corner are preserved through the logit or probit estimation. In the 

second step, the standard quantile regression is conducted. Third, based on the estimated value of 

conditional quantiles of the outcome, a larger set of observations are preserved for another quantile 

regression.6 For computational reason, I cannot analyze wind and biomass data, which have more than 

90% zero observations. Since this method only allows cross-section data, I adapt the CCR to solar power 

capacity outcome in 2008, 2010, 2013, 2014, and 2015 and report the average corner marginal effect at 

median. Standard error is computed by the weighted bootstrap method, repeating 100 times. Table 7 

shows that the average corner marginal effect of ownership unbundling at median of solar power capacity 

is mostly positive but is statistically and economically insignificant. 

 

Table 7. Censored quintile regression estimates 

Year 2008 2010 2013 2014 2015 

T 0.0006 -0.0965 0.0277 0.0066 0.0013 

[Std.Err] [0.042] [0.194] [0.028] [0.018] [0.009] 

 
5 While censoring means some observations are not observed at certain values, however, corner solution outcomes are 
actually observable as zeroes. 
6 Refer to Chernozhukov et al. (2019, 2015) for details and implementation in Stata. 
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Covariates Yes Yes Yes Yes Yes 

Observations 517 517 517 517 517 

Note: Outcome is solar power generation capacity installed (starting operation) per year. The data sample used covers 

within 10 km from the boundary. Distance to the treatment assignment boundary is specified as the cubic polynomials. 

Standard error is in brackets. Statistically significant coefficients are denoted by the following rule: * p<0.1, ** p<0.05, *** 

p<0.01. All estimates contain time-invariant covariates such as solar potential, elevation, slope, and state dummies. A logit 

model is used in the first stage. 

 

Third, I conduct Poisson regression, transforming outcome variables into count data. The Poisson 

regression is also suited to analyze the corner solution outcome, because a nonnegative outcome is 

guaranteed by modeling the conditional mean function in exponential form: E[Y୧୲|X୧୲] = α୧exp(c + βଵT୧ +

βଶPost୲ + βଷT୧ × Post୲ + βସ f(C୧) + βହX'
୧୲

 +Statei + Year୲ + ɛ୧୲). Another advantage of the Poisson model 

is that the panel data unobserved- (fixed-) effects model is exceptionally tractable, unlike other 

nonlinear models such as the Tobit model. The fixed-effects Poisson estimator is consistent without 

assuming the distribution of Yit given (xi, ci) and independence between Yit and Yir, t ≠ r (Wooldridge, 

2010). For these properties, this alternative model serves as an additional robust check to the main 

specifications. The outcome variable is transformed into the number of annual renewable power plants 

built in a municipality. Note that the fixed-effects model loses the observations for which the municipality 

has a zero outcome during all periods in the estimation. I present the result for both random- and fixed-

effects models. Table 8 shows that both models have the similar scale of insignificant coefficients, 

indicating ownership unbundling does not increase the number of renewable power plant installation. 

 

Table 8. Poisson regression estimates 

Outcome Solar Wind Biomass 

Model RE FE RE FE RE FE 

T*Post 0.065 0.058 -1.222 -1.317 0.329 0.314 

[Std.Err] [0.05] [0.05] [0.93] [0.93] [0.42] [0.43] 

Covariates Yes Yes Yes Yes Yes Yes 

Log likelihood -9672.63 -6883.19 -689.22 -334.63 -787.27 -328.30 

Clusters 509 497 509 76 509 158 

Observations 2543 2485 2543 380 2543 790 

Note: Outcome is the number of annual renewable power plants installed in a municipality. The data sample used covers 

within 10 km from the boundary. Distance to the treatment assignment boundary is specified as the cubic polynomials. 

Robust standard error is clustered by municipality in brackets. Statistically significant coefficients are denoted by the 

following rule: * p<0.1, ** p<0.05, *** p<0.01. All random-effects estimates contain year dummies and time-invariant 
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covariates such as solar potential, wind power potential, agricultural land, elevation, slope, and state dummies. 

 

Last, I explore a possible causal channel using the fact that most renewable power plants are 

connected to the distribution grid controlled by DSOs in Germany. As Figure 1 describes, there are 

some DSOs owned by the Big 4 as well as hundreds of independent DSOs in Germany. If ownership 

unbundling by E.ON induces investment in renewable electricity generating capacity, E.ON’s 

subsidiary’s DSOs should accept more connections from renewable power plants than other DSOs 

after 2010. This last robustness check adds a DSO fraction variable and the interaction term to the 

model to test this hypothesis: 

 

Yit=c+β1Ti+β2Postt+β3Ti × Postt+β4DSO୧
ୣ୭୬+β5Ti × Postt × DSO୧

ୣ୭୬+β6 f(Ci)+β7X'it+αi+Statei+Year୲+ɛit.  

 

where β5 is the parameter of interest, and DSOeon is a fraction of renewable electricity generation capacity 

connected to the DSO that E.ON owns as a subsidiary, and take value between one to zero. Tables 9 

and 10 show that the coefficient of the interaction term implies that the effect of ownership unbundling is 

not positive and significant; this indicates that the ownership unbundling does not increase the new 

renewable power plant connections to DSOs owned by E.ON. This result does not change across any 

specifications or when I redefine the DSO variable as the subsidiary of subsidiary of E.ON. These 

robustness checks further reinforce the reliability of the estimation results in the previous section. 

 

Table 9. Robustness checks: Interaction with DSO share variable 

Panel A. Outcome: Solar power capacity 

Model DID Tobit RE Poisson RE Poisson FE 

T*Post 0.035 0.037 0.051 0.035 

[Std.Err] [0.08] [0.09] [0.06] [0.06] 

DSOeon 0.02 0.084 0.117 0.095 

[Std.Err] [0.11] [0.09] [0.10] [0.11] 

T*Post* DSOeon -0.072 -0.13 0.051 0.073 

[Std.Err] [0.07] [0.10] [0.07] [0.07] 

Covariates Yes Yes Yes Yes 

Adj-R2/Log likelihood 0.145  -9661.52 -6872.58 

Clusters 509  509 497 

Observations 2543 2543 2543 2485 

 

Panel B. Outcome: Wind power capacity 
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Model DID Tobit RE Poisson RE Poisson FE 

T*Post -0.349** -0.206 -1.613* -1.717** 

  [Std.Err] [0.18] [0.34] [0.89] [0.86] 

DSOeon 1.233 0.496* 0.034 -0.212 

  [Std.Err] [1.94] [0.29] [0.93] [0.82] 

T*Post* DSOeon 0.445 -0.124 1.349 1.126 

[Std.Err] [0.41] [0.30] [1.19] [1.49] 

Covariates Yes Yes Yes Yes 

Adj-R2/Log likelihood 0.005  -682.494 -332.68 

Clusters 509  509 76 

Observations 2543 2543 2543 380 

 

Panel C. Outcome: Biomass power capacity 

Model DID Tobit RE Poisson RE Poisson FE 

T*Post 0.007 0.006 0.259 0.321 

[Std.Err] [0.03] [0.02] [0.44] [0.47] 

DSOeon 0.0001 0.026 0.412 -0.828 

[Std.Err] [0.05] [0.02] [0.38] [1.29] 

T*Post* DSOeon -0.03 0.003 0.263 -0.04 

[Std.Err] [0.05] [0.02] [0.43] [0.54] 

Covariates Yes Yes Yes Yes 

Adj-R2/Log likelihood 0.056  -783.944 -327.776 

Clusters 509  509 158 

Observations 2543 2543 2543 790 

Note: The data sample used covers within 10 km from the boundary. Distance to the treatment assignment boundary is 

specified as the cubic polynomials. Average marginal effect is reported for the Tobit model. Robust standard error is 

clustered by municipality in brackets. Statistically significant coefficients are denoted by the following rule: * p<0.1, ** 

p<0.05, *** p<0.01. All random-effects estimates contain year dummies and time-invariant covariates such as solar 

potential, wind power potential, agricultural land, elevation, slope, and state dummies. 

 

Table 10. Censored quintile regression estimates  

year 2008 2010 2013 2014 2015 

T*Post * DSOeon -0.665 -2.242** -0.216 -0.956*** -0.134 

[Std.Err] [1.817] [1.131] [0.216] [0.294] [0.605] 
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Covariates Yes Yes Yes Yes Yes 

Observations 517 517 517 517 517 

Note: Outcome is solar power generation capacity installed (start operation) per year. The data sample used covers within 

10 km from the boundary. Distance to the treatment assignment boundary is specified as the cubic polynomials. Standard 

error is in brackets. Statistically significant coefficients are denoted by the following rule: * p<0.1, ** p<0.05, *** p<0.01. All 

estimates contain time-invariant covariates such as solar potential, wind power potential, agricultural land, elevation, slope, 

and state dummies. A logit model is used in the first stage. 

 

7. Discussion 

Table 11 summarizes the estimated causal effect on renewable electricity investment with 95 percent 

confidence interval (CI). Almost all point estimates imply small, economically and statistically 

insignificant effects. The point estimates tell us that the ownership unbundling by E.ON caused a 

change in solar power capacity from 0.007 to -0.018 MW per municipality-year. The upper end of CI 

shows that I can rule out an effect over 0.13 MW. Similarly, the upper bound of CI rules out a causal 

effect of more than a 0.31 MW increase of wind power capacity and a 0.05 MW increase of biomass 

power capacity, respectively. These estimates are very small, compared to the fact that more than 

22,800 MW of solar power capacity, 15,000 MW of onshore wind power capacity, and 1,700 MW of 

biomass power capacity were installed in Germany during 2010–2016 (Clean Energy Wire, 2019). 

 

Table 11. Causal effect on renewable electricity investment  

Outcome Solar Wind Biomass 

Model DID Tobit DID Tobit DID Tobit 

Point estimate 0.007 -0.018 -0.308 -0.305 0.001 0.007 

Upper end of 

95% CI 
0.14 0.13 0.1 0.31 0.05 0.04 

Note: Estimates are obtained based on the results from Tables 5 and 6. 

 

This result is consistent with Höffler and Kranz (2011), who demonstrates that legal unbundling with 

regulation for a network company can work as perfectly as ownership unbundling in separating the 

interests of the network company from the rest of the integrated group. Moreover, they show that even 

if legal unbundling itself cannot make TSOs act independently, behavior regulations can complement 

legal unbundling to focus only on its own profit, without caring about the profit of downstream firms. 

From this perspective, the Renewable Energy Act amendment in 2000 is the first important federal 

law for renewable electricity investment by independent generation firms. It requires the TSO to 

interconnect and dispatch the renewable electricity with priority. Second, the Federal Network Agency 
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in 2005 started to supervise over the electricity network company, to foster competition and ensure fair 

and non-discriminatory access. Third, a special regulation exists for the grid connection of biomass 

power plants: Section 33 of the Gas Network Access Ordinance set grid connection requirements and a 

procedure for connecting biogas plants in April 2008. Last and probably most important, the Energy 

Industry Act (Section 10) transposed the 3rd European Directive regarding the ITO model into the 

federal regulation regime in August 2011. This federal law effectively functioned to strengthen 

regulation of legally unbundled TSOs. The estimates in this paper provide evidence that these 

regulations on TSOs together with legal unbundling effectively made TSOs independent and removed 

any room for incumbents to prevent potential competitors from investing in renewable electricity 

generation. 

 

8. Conclusion 

This study investigated the causal effect of ownership unbundling of TSOs on renewable electricity 

investment in Germany. Using a GQE approach, I found that neither solar power, wind power, nor 

biomass power capacity significantly increased due to ownership unbundling. Several robustness 

checks confirmed the results. They are surprising, because the treatment was potentially confounded 

by divestitures of large-scale non-renewable generation power plants owned by E.ON. Both E.ON’s 

power plant sales and transmission network unbundling are expected to increase competition in the 

generation market, thereby reducing conflict of interest for the vertically integrated utility. While Duso et 

al. (2020) estimate that divestitures by E.ON significantly decreased the wholesale price in the peak 

period, this paper found that these competition increasing measures did not decrease but hardly 

increased renewable electricity investment. 

This evidence suggests that the electricity generation market in Germany is competitive even without 

ownership unbundling. In other words, legal unbundling with tougher regulations as implemented in 

Amprion’s and TransnetBW’s areas can perform as effective in creating a level playing field as 

ownership unbundling implemented by E.ON. Although some people believe ownership unbundling is 

necessary to accelerate renewable electricity investment, this study supports the opposite view, in line 

with the analysis of industrial organization theory by Höffler and Kranz (2011) in that legal unbundling 

with regulation works well for transmission network companies to remove sabotage incentives. With 

various regulations on vertically integrated utility and TSOs in the federal legislation, it is possible for 

independent renewable electricity developers to enter the generation market and invest in renewable 

electricity. 

This study has an encouraging implication for energy policymakers in other countries, because 

politically difficult ownership unbundling of the privately owned incumbent’s power network asset is not 

necessarily required to achieve renewable electricity investment; rather, the government can encourage 
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renewable electricity investment with national-level regulations for a vertically integrated utility with 

relatively cheap costs.  
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Appendix 

Table A. Local linear DID regression estimates including Rhineland-Palatinate (Table 4’) 

Panel A. Outcome: Solar power capacity  

Distance within 30km 20km 10km 

T*Post 0.063** 0.044 0.026 

 [Std.Err] [0.03] [0.04] [0.06] 

Covariates Yes Yes Yes 

Adj-R-squared 0.134 0.126 0.139 

Clusters 1588 1075 534 

Observations 7933 5371 2668 

 

Panel B. Outcome: Wind power capacity  

Distance within 30km 20km 10km 

T*Post -0.058 -0.038 -0.256 

[Std.Err]  [0.08] [0.09] [0.19] 

Covariates Yes Yes Yes 

Adj-R-squared 0.003 0.004 0.004 

Clusters 1588 1075 534 

Observations 7933 5371 2668 

 

Panel C. Outcome: Biomass power capacity 

Distance within 30km 20km 10km 
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T*Post 0.025 0.012 0.002 

 [Std.Err] [0.02] [0.02] [0.02] 

Covariates Yes Yes Yes 

Adj-R-squared 0.029 0.04 0.054 

Clusters 1588 1075 534 

Observations 7933 5371 2668 

Note: Outcome is renewable electricity generation capacity installed (start operation) per year. The data sample includes 

municipalities from 30 km, 20 km, to 10 km from the border including Rhineland-Palatinate. Robust standard error clustered 

by the municipality in bracket. Statistically significant coefficients are denoted as the following rule: * p<0.1, ** p<0.05, *** 

p<0.01.  

 

Table B. Tobit random effect model estimates including Rhineland-Palatinate (Table 5’) 

Panel A. Outcome: Solar power capacity  

 Outcome Solar 

Cubic Polynomial Distance to Boundary  Longitude and Latitude 

Distance within 30km 20km 10km 30km 20km 10km 

T*Post 0.039 0.030 0.010 0.039 0.030 0.011 

[Std.Err]  [0.03] [0.05] [0.07] [0.03] [0.05] [0.07] 

Covariates Yes Yes Yes Yes Yes Yes 

Observations 7933 5371 2668 7933 5371 2668 

 

Panel B. Outcome: Wind power capacity  

 Outcome Wind 

Cubic Polynomial Distance to Boundary  Longitude and Latitude 

Distance within 30km 20km 10km 30km 20km 10km 

T*Post - -0.049 -0.296 - -0.053 -0.297 

 [Std.Err] - [0.14] [0.30] - [0.14] [0.30] 

Covariates  Yes Yes  Yes Yes 

Observations  5371 2668  5371 2668 

 

Panel C. Outcome: Biomass power capacity 

 Outcome Biomass 

Cubic 

Polynomial 
Distance to Boundary  Longitude and Latitude 
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Distance 

within 
30km 20km 10km 30km 20km 10km 

T*Post 0.012 0.004 0.006 0.012 0.005 0.006 

[Std.Err] [0.01] [0.01] [0.02] [0.01] [0.01] [0.02] 

Covariates Yes Yes Yes Yes Yes Yes 

Observations 7933 5371 2668 7933 5371 2668 

Note: Outcome is renewable electricity generation capacity installed (start operation) per year. The data sample includes 

municipalities from 30 km, 20 km, to 10 km from the border including Rhineland-Palatinate. Note that the maximum 

likelihood estimator for wind power capacity does not converge using sample within 30 km from the boundary so the result 

is not shown. Column 1-3 use cubic polynomial of distance to the treatment assignment boundary and column 4-6 use that 

of longitude and latitude. Average marginal effect is reported. Statistically significant coefficients are denoted as the 

following rule: * p<0.1, ** p<0.05, *** p<0.01. All estimates contain year dummies and time invariant covariates such as 

solar potential, wind power potential, agricultural land, elevation, slope, and state dummies. 

 

Table C. Tobit random effect model estimates using quadratic and quartic of polynomial to the 

boundary (Table 5’’) 

 Solar Wind Biomass 

Distance to Boundary Quadratic Quartic Quadratic Quartic Quadratic Quartic 

T*Post -0.0185 -0.0184 -0.3047 -0.3106 0.0062 0.0067 

[Std.Err] [0.07] [0.07] [0.31] [0.31] [0.02] [0.02] 

Covariates Yes Yes Yes Yes Yes Yes 

Observations 2543 2543 2543 2543 2543 2543 

Note: Outcome is renewable electricity generation capacity installed (start operation) per year. Odd-numbered columns 

report quadratic polynomial of distance to the treatment assignment boundary and even-numbered columns report the 

quartic polynomial. The data sample includes municipalities 10 km from the border. Average marginal effect is reported. 

Statistically significant coefficients are denoted as the following rule: * p<0.1, ** p<0.05, *** p<0.01. All estimates contain 

year dummies and time invariant covariates such as solar potential, wind power potential, agricultural land, elevation, slope, 

and state dummies. 

 

Table D. Robustness checks when data sample is 2008-2010 with longitude and latitude (Table 6’) 

 Solar Wind Biomass 

Model Tobit Tobit Tobit 

T*Post -0.295** -0.098 0.024 

[Std.Err]  [0.14] [0.11] [0.04] 
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Covariates Yes Yes Yes 

Observations 1018 1018 1018 

Note: Outcome is renewable electricity generation capacity installed (start operation) per year. The data sample used are 

within 10 km from the border. Cubic polynomial of longitude and latitude are used. Robust standard error clustered by the 

municipality in bracket for the local linear DID. Statistically significant coefficients are denoted as the following rule: * p<0.1, 

** p<0.05, *** p<0.01. All Tobit random effect estimates contain year dummies and time invariant covariates such as solar 

potential, wind power potential, agricultural land, elevation, slope, and state dummies. 

 

Table E. Censored quintile regression estimates with longitude and latitude (Table 7’) 

year 2010 2013 2014 2015 

T -0.131 -0.001 0.008 -0.004 

[Std.Err] [0.240] [0.040] [0.020] [0.011] 

Covariates Yes Yes Yes Yes 

Observations 517 517 517 517 

Note: Outcome is solar power generation capacity installed (start operation) per year. The data sample used are within 10 

km from the border. Cubic polynomial of longitude and latitude are used. Standard error is in bracket. Statistically significant 

coefficients are denoted as the following rule: * p<0.1, ** p<0.05, *** p<0.01. All estimates contain time invariant covariates 

such as solar potential, elevation, slope, and state dummies. Logit model is used in the first stage. 

 

Table F. Poisson regression estimates with longitude and latitude (Table 8’) 

 Solar Wind Biomass 

 model RE RE RE 

T*Post 0.066 -1.237 0.328 

 [Std.Err] [0.05] [0.93] [0.43] 

Covariates Yes Yes Yes 

Log likelihood -9649.94 -675.687 -772.89 

Clusters 509 509 509 

Observations 2543 2543 2543 

Note: Outcome is the number of annual renewable electricity generation capacity installed in a municipality. The data 

sample used are within 10 km from the border. Cubic polynomial of longitude and latitude are used. Robust standard error 

clustered by the municipality in bracket. Statistically significant coefficients are denoted as the following rule: * p<0.1, ** 

p<0.05, *** p<0.01. All random effect estimates contain year dummies and time invariant covariates such as solar potential, 

wind power potential, agricultural land, elevation, slope, and state dummies. 

 

Table G. Robustness checks: interaction with DSO and longitude and latitude (Table9’) 
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 Solar Wind Biomass 

 Model Tobit RE 
Poisson 

RE 
Tobit RE 

Poisson 

RE 
Tobit RE 

Poisson 

RE 

T*Post 0.029 0.05 -0.087 -1.674* 0.005 0.293 

[Std.Err] [0.09] [0.06] [0.36] [0.87] [0.02] [0.44] 

DSOeon 0.049 0.109 0.880*** 0.017 0.034* 0.396 

[Std.Err] [0.09] [0.10] [0.33] [0.98] [0.02] [0.43] 

T*Post* DSOeon -0.11 0.054 -0.302 1.516 0.008 0.146 

[Std.Err] [0.10] [0.07] [0.33] [1.25] [0.02] [0.41] 

Covariates Yes Yes Yes Yes Yes Yes 

Log likelihood  -9639.43  -661.95  -770.718 

Clusters  509  509  509 

Observations 2543 2543 2543 2543 2543 2543 

Note: The data sample used are within 10 km from the border. Cubic polynomial of longitude and latitude are used. Average 

marginal effect is reported for the Tobit model. Robust standard error clustered by the municipality in bracket. Statistically 

significant coefficients are denoted as the following rule: * p<0.1, ** p<0.05, *** p<0.01. All Tobit random effect estimates 

contain year dummies and time invariant covariates such as solar potential, wind power potential, agricultural land, 

elevation, slope, and state dummies. 

 

Table H. Censored quintile regression estimates with longitude and latitude (Table10’) 

year 2010 2013 2014 2015 

T* DSOeon 1.032 -0.163 -0.325 -0.110 

[Std.Err] [1.782] [0.305] [0.249] [0.078] 

Covariates Yes Yes Yes Yes 

Observations 517 517 517 517 

Note: Outcome is solar power generation capacity installed (start operation) per year. The data sample used are within 10 

km from the border. Cubic polynomial of longitude and latitude are used. Standard error is in bracket. Statistically significant 

coefficients are denoted as the following rule: * p<0.1, ** p<0.05, *** p<0.01. All estimates contain time invariant covariates 

such as solar potential, elevation, slope, and state dummies. Logit model is used in the first stage. 


